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Abstract

Instability of Marangoni convection in non-cylindrical (convex or concave) liquid bridges of low Prandtl number

¯uids is investigated by direct three-dimensional and time-dependent simulation of the problem. Body-®tted curvilinear

coordinates are adopted; the non-cylindrical original physical domain in the (r; z;/) space is transformed into a

cylindrical computational domain in a (n; g;/) space. The geometry of the domain is transformed using a coordinate

transformation method by surface ®tting technique. The ®eld equations are numerically solved explicitly in time and

with a ®nite di�erence technique in a staggered grid. The numerical results are analyzed and interpreted in the general

context of the bifurcation's theory.

The computations show that for semiconductor melts the ®rst bifurcation is characterized by the loss of spatial

symmetry rather than by the onset of oscillatory ¯ow and that it is hydrodynamic in nature. The ¯ow ®eld azimuthal

organization related to the critical wave number, depends on the geometrical aspect ratio A � L=D of the liquid bridge

and on the shape factor S (convex S > 1, concave S < 1) of the free surface. The critical azimuthal wave number in-

creases when the geometrical aspect ratio of the bridge is decreased and, for a ®xed aspect ratio, can be shifted to higher

values by increasing the volume (convex bridges) or to lower values by decreasing the volume (concave bridges).

This behavior is explained on the basis of the relation between the typology of the azimuthal disturbances and the

structure of the ¯uid-dynamic ®eld.

A generalized law is found to correlate the critical azimuthal wave number of the instability to the geometrical aspect

ratio and to the shape factor.

A second oscillatory (Hopf) bifurcation occurs when further increasing the Marangoni number. Experimental results

available in literature on this second bifurcation are considered for comparison. The experimental and numerical results

show a good agreement. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

The ¯oat-zone method is an important technique to

produce high quality crystal material. By the con-

tainerless method, crystals can be grown with less con-

tamination, more homogeneity and higher purity. In

these techniques, the melt is positioned and solidi®ed

without physically contacting the container's wall in

order to minimize container-induced contamination and

heterogeneous nucleation.

In the ¯oat-zone crystal growth, a melt zone is pro-

duced by heating a short length of feed rod by a heat

source such as a ring heater. The rod is slowly moved

through the hot zone, and the crystal is obtained by

resolidi®cation of the melt as it is moved away from the

melt zone. If the melt/crystal interface remains ¯at

during the resolidi®cation, often uniform and high

quality single crystals can be produced.

The ¯oat-zone technique under microgravity seems to

be a promising crystal growth method to solve several

problems. Buoyancy-driven convection, which is the

most important cause of micro-inhomogeneities (stria-

tions) is in fact absent under microgravity conditions.
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Furthermore, because of the limitations set by hydro-

static pressure on earth, crystals with a larger diameter

can be grown by this technique only under zero-g con-

ditions.

The availability of extended periods of microgravity

in Earth-orbiting laboratory as the Spacelab and the

Space Station has made interesting experiments and

manufacturing processing possible, which hardly could

be performed on Earth under normal gravity conditions.

However, even in the absence of gravity the presence

of free-melt-gas interface at di�erent temperatures

induces thermocapillary convection, the so-called

Marangoni convection.

As a simpli®ed model for the actual ¯ow simulation of

a real ¯oating zone in the present work, it is considered a

liquid bridge between two coaxial circular disks of equal

diameter, heated at one disk and cooled at the other so

that a temperature gradient (and consequently a surface

tension gradient) on the free surface of the liquid bridge

is established. The ¯ow situation in this model corre-

sponds (approximately) to that of half of a ¯oating zone,

heated radially by a ring heater positioned on the

equatorial plane around the ¯oating zone.

The appearance of instabilities of Marangoni ¯ow in

these con®gurations may lead to the appearance of un-

desirable imperfections (e.g., dopant inhomogeneities) in

the ®nal crystals; consequently non-isothermal liquid

bridges have received much attention during the past

years.

The development of supercomputers and e�cient

numerical methods led the investigators to study the

problem through direct numerical solution of the non-

linear and time-dependent Navier±Stokes equations.

Rybicki and Florian [1] considered the steady axi-

symmetric thermocapillary convection in cylindrical

liquid bridges. They analyzed numerically the e�ects of

the bridge aspect ratio showing that a decrease in the

aspect ratio (short bridges) leads to the emergence of

several layers of vortices, with the strength of each layer

decreasing approximately exponentially with the dis-

tance from the surface.

Rupp et al. [2] were the ®rst to develop a 3D numer-

ical code able to simulate the transition of Marangoni

¯ow in cylindrical half zone con®gurations. They studied

the behavior of the instability for several low Prandtl

liquids and for a ®xed aspect ratio, and found that for

liquid metals the ®rst bifurcation is stationary (i.e., the

supercritical 3D state is steady) and that the regime

becomes oscillatory only when the Marangoni number is

further increased (second oscillatory bifurcation). These

results pointed out that the behavior of the Marangoni

¯ow instability for low Prandtl liquids is di�erent com-

pared to the high Prandtl cases.

Levenstan and Amberg [3] analyzed, for a ®xed small

Prandtl number (Pr � 0:01) and for a ®xed aspect ratio,

the nature (i.e., the physical explanation) of the ®rst

steady and of the second oscillatory bifurcation of the

Marangoni ¯ow. More recently, Lappa and Savino [4]

Nomenclature

A aspect ratio, L=D
Am L/Dm

Av L/Dv

D diameter of the supporting disks

Dm minimum (maximum) diameter of the liquid

bridge

Dv diameter of the toroidal convection roll

g dimensionless radial coordinate of the free

surface

L height of the liquid bridge

m azimuthal wave number

Ma Marangoni number

Mac1 critical Marangoni number for the ®rst (steady)

bifurcation

Mac2 critical Marangoni number for the second

(Hopf) bifurcation

p dimensionless pressure

Dp dimensionless pressure jump along the

liquid±gas interface

Pr Prandtl number

r dimensionless radial coordinate

R radius of the supporting disks

S shape factor, V=Vo
t dimensionless time

T dimensionless temperature

T C dimensional temperature on the cold disk

T H dimensional temperature on the hot disk

DT dimensional temperature di�erence between the

supporting disks

u dimensionless axial velocity

v dimensionless radial velocity

V/ dimensionless azimuthal velocity

V volume of the liquid bridge

Vo volume of the cylindrical liquid bridge,

Vo � pLR2

z dimensionless axial coordinate

Greek symbols

a thermal di�usivity

/ azimuthal coordinate

g r=g�n�
l dynamic viscosity

r surface tension

�rT surface tension derivative, ÿd�r=dT
n z in the transformed space
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studied the azimuthal structure of the ¯ow pattern that

is established after the steady bifurcation for Pr � 0:04

and for two di�erent values of the geometrical aspect

ratio (A � L=D). They showed that there is a strong re-

lation between the value of A and the critical azimuthal

wave number (m) of the instability.

A number of theoretical and numerical studies has

also appeared, in which the problem was addressed in

the framework of the hydrodynamic stability theory to

de®ne conditions for the stability and the instability.

Kuhlmann [5], Kuhlmann and Rath [6], and Wans-

chura et al. [7] investigated the linear stability of steady

axisymmetric thermocapillary ¯ow in cylindrical liquid

bridges. Their results predicted the critical Marangoni

numbers and the form of the most typical disturbances,

characterized by the appropriate value of the critical

wave number, in the neighborhood of the neutral

stability point (i.e., close to the onset). Comparison of

the theoretical results with the numerical available data

have con®rmed some features of the observed instabili-

ties, e.g., for low Prandtl numbers the instability breaks

the spatial axisymmetry (but the ¯ow regime is still

steady) prior to the onset of time-dependent ¯ow ®eld,

whereas for high Prandtl numbers the instability is

oscillatory (Hopf bifurcation).

All the available 3D numerical results have been ob-

tained for cylindrical liquid bridges.

It is expected that both the aspect ratio (A) and the

shape factor S �V=Vo, where V is the liquid volume

and Vo is the volume of the cylindrical liquid bridge

(Vo � pLR2, where R is the radius of the supporting

disks and L is the length of the liquid bridge), should

in¯uence the Marangoni instability occurrence.

Under normal-g conditions surface deformation with

respect to the zero-g shape is produced by gravity e�ects

(hydrostatic pressure). These amphor-like shapes that do

not exhibit a symmetry plane orthogonal to the bridge

axis are not considered in this work but are being con-

sidered in further studies for a more accurate simulation

of the ¯oating-zone processes carried out on Earth.

Shevtsova et al. [8] studied the in¯uence of the liquid

bridge volume on the steady thermocapillary ¯ow solv-

ing the axisymmetric Navier±Stokes equations in the

domain occupied by the liquid, transforming the physi-

cal space to a rectangular numerical domain, using

curvilinear body ®tted coordinates (n; g). The trans-

formed Navier±Stokes equations were solved using a 2D

time-dependent ®nite-di�erence ADI technique in

stream function, vorticity formulation w;x; T and the

Marangoni ¯ow studied in the limit Ma! 0. The same

technique based on the transformation of the non-rect-

angular original physical domain into a rectangular

computational domain was adopted later by Shevtsova

and Legros [9]. To solve the problem in body ®tted

curvilinear coordinates, the axisymmetric time-depen-

dent Navier±Stokes equations were written in the

physical variables �u; v; p; T � and solved numerically

with a 2D MAC method.

Chen and Hu [10] used the linear stability analysis to

study the in¯uence of the liquid bridge volume on the

instability of Marangoni ¯ow for high Prandtl number

liquids.

This overview of the literature on the subject shows

that there is still a lack of 3D numerical results about the

behavior of Marangoni ¯ow in non-cylindrical liquid

bridges. In particular, it is unknown how the stability

limits depend upon S 6� 1 for low Prandtl liquids.

In the present paper, the in¯uence of the shape factor

of the liquid bridge on the critical parameters (critical

Marangoni number and critical azimuthal wave num-

ber) for semiconductor melts under zero-g conditions is

studied through direct numerical solution of the 3D,

non-linear and time-dependent Navier±Stokes equa-

tions.

2. Physical and mathematical model

2.1. Basic assumptions

The geometry of the problem is shown in Fig. 1. An

axisymmetric liquid bridge of length L and diameter D is

held between two coaxial disks at di�erent temperatures.

The upper disk in Fig. 1 is kept at the temperature T H

higher than the temperature T C of the lower cold disk.

The imposed temperature di�erence is denoted by DT
(T H � T C � DT ). The overbar denotes dimensional

quantities. The liquid is assumed homogeneous and

Newtonian, with constant density and constant coef-

®cients; viscous dissipation is negligible. The liquid ®ll-

ing the bridge is bounded by an axisymmetric liquid±gas

interface with a surface tension r exhibiting a linear

decreasing dependence on the temperature

Fig. 1. Scheme of the liquid bridge and boundary conditions.
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r � r0 ÿ rT�T ÿ T 0�; �1�
where r0 is the surface tension for T � T 0 and

rT � ÿdr=dT > 0:
The interface is assumed to be non-deformable and

axisymmetric around the z-axis; its radial coordinate is a

function of the z variable (r � g�z�).
At zero-g, the hydrostatic shape of this surface can be

obtained from the Gauss±Laplace equation, relating the

local curvature of the surface to the pressure jump along

the liquid±gas interface

Dp � r
1

R1

�
� 1

R2

�
; �2�

where R1 and R2 are the principal radii of curvature at

each point of the surface.

Eq. (2) may be reformulated in dimensionless form in

the cylindrical coordinates by substituting the analytical

expression of the principal radii of curvature in axi-

symmetric geometry in terms of the surface equation

g(z) (g � g=L, r � r=L, z � z=L)

1

g�1� g02� ÿ
g00

�1� g02�3=2
� LDp

r
� k; �3a�

where the left-hand side represents the non-dimensional

pressure jump with respect to the capillary pressure r=L.

Eq. (3a) can be written as

gg00 � kg�1� g02�3=2 ÿ �1� g02�1=2 � 0: �3b�
Each value of the parameter k � LDp=r corresponds to a

shape and to a ®xed volume of the liquid bridge. The

value of k has been assigned in Eq. (3b) (to obtain the

desired shape for each case considered) and the equation

has been integrated by a shooting method with the

conditions that the liquid is attached to the solid sup-

ports

g�0� � g�1� � R=L: �4a; b�
Further to the non-dimensional liquid bridge volume (or

shape factor S �V=Vo) and to the geometrical aspect

ratio (A � L=D), other geometrical parameters are in-

troduced: Dm minimum or maximum diameter of the

liquid bridge, and the non-dimensional parameter

Am � L=Dm, ratio of the length of the bridge to the

minimum or maximum diameter (this parameter is not

independent of A and S as shown in Fig. 2 for A � 1).

2.2. Non-dimensional ®eld equations and boundary con-

ditions

The ¯ow is governed by the continuity, Navier±Stokes

and energy equations, that in non-dimensional conser-

vative form read:

r � V � 0; �5a�

oV
ot
� ÿrp ÿr � V V� � � Prr2V ; �5b�

oT
ot
� ÿr � V T� � � r2T ; �5c�

where V, p and T are the non-dimensional velocity,

pressure and temperature, Pr is the Prandtl number. The

non-dimensional form results from scaling the cylindri-

cal co-ordinates (r; z) by the axial distance between the

circular disks (L) and the velocity components (u; v; V /)

by the energy di�usion velocity Va � a=L; the scales for

time and pressure are, respectively, L2=a and qa2=L2 (a
being the thermal di�usivity). The temperature,

measured with respect the initial temperature T 0, is

scaled by �DT �

T � �T ÿ T 0�=�DT �: �6�

In cylindrical coordinates the momentum equations

read:

ou
ot
� ÿ op

oz
ÿ ou2

oz

�
� ouv

or
� uv

r
� 1

r
ouV/

o/

�
� Pr

o2u
oz2

�
� o2u

or2
� 1

r
ou
or
� 1

r2

o2u

o/2

�
; �7a�

ov
ot
�ÿ op

or
ÿ ouv

oz

 
� ov2

or
� v2

r
� 1

r
ovV/

o/
ÿ V 2

/

r

!

� Pr
o2v
oz2

�
� o2v

or2
ÿ v

r2
� 1

r
ov
or
� 1

r2

o2v

o/2
ÿ 2

r2

oV/

o/

�
;

�7b�

Fig. 2. Am versus S for A � 1.
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oV/

ot
� ÿ 1

r
op
o/
ÿ ouV/

oz

 
� ovV/

or
� 2vV/

r
� 1

r

oV 2
/

o/

!

� Pr
o2V/

oz2

�
� o2V/

or2
� 1

r
oV/

or
ÿ V/

r2
� 1

r2

o2V/

o/2
� 2

r2

ov
o/

�
:

�7c�
At the initial time, the liquid ®lling the bridge is sup-

posed to be quiescent and at uniform temperature

t � 0 : V �z; r;/� � 0; T �z; r;/� � 0: �8�
For t > 0, the boundary conditions on the rigid disks are

the no-slip condition and the temperature conditions

On the cold disk

V �z � 0; r;/; t� � 0; T �z � 0; r;/; t� � 0

06 r6 1=2A; 06/6 2p: �9�
On the hot disk

V �z � 1; r;/; t� � 0; T �z � 1; r;/; t� � 1

06 r6 1=2A; 06/6 2p: �10�
The boundary conditions on the free surface �r � g�z��
are the kinematic conditions of a stream surface (zero

normal velocity), the Marangoni conditions (shear stress

balance) and the adiabatic condition.

Hereafter VS and Vn denote the velocity components in

the plane (r ÿ z) parallel and orthogonal to the free

surface, respectively

VS � bu�z; r � g�z�;/; t� ÿ av�z; r � g�z�;/; t�; �11a�

Vn � au�z; r � g�z�;/; t� � bv�z; r � g�z�;/; t�; �11b�
where a and b are the components of the unit vector

orthogonal to the free surface along z and r, respectively.

The condition of zero normal velocity and the Ma-

rangoni conditions read

Vn � 0! v�z; r � g�z�;/; t� � ÿ a
b

u�z; r � g�z�;/; t�;
�12a�

oVS

on
� ÿMa

oT
os
�z; r � g�z�;/; t�; �12b�

r
oV/

or
�z; r � g�z�;/; t� ÿ V/�z; r � g�z�;/; t�

� ÿMa
oT
o/
�z; r � g�z�;/; t�; �12c�

where the reference Marangoni number Ma is de®ned as

Ma � �rT�DT �L=la.

The adiabatic condition is written as

oT
on
� a

oT
oz
� b

oT
or
� 0: �12d�

To solve the problem, the body-®tted curvilinear coor-

dinates are adopted. The non-cylindrical original phys-

ical domain in the �r; z;/� space is transformed into a

cylindrical computational domain in the �n; g;/� space

by

z � n! n � z;

r � gg�n� ! g � r=g�n� �13�

thus the radial coordinate r ranges from g � 0 (at the

symmetry axis) up to g � 1 at the free surface; the axial

coordinate varies from n � 0 at the cold up to n � 1 at

the hot disk.

The ®rst order spatial derivatives read

of
oz
� of

on
on
oz
� of

og
og
oz
! of

oz
� of

on
ÿ g0

g
g

of
og
; �14a�

of
or
� of

on
on
or
� of

og
og
or
! of

or
� 1

g
of
og
: �14b�

The second order spatial derivatives read

o2f
oz2
� o2f

on2
� g0

g

� �2

g2 o2f
og2
ÿ 2g0

g
g

o2f
onog

ÿ g00

g
g
of
og
; �15a�

o2f
or2
� 1

g2

o2f
og2

: �15b�

Thus the ®eld equations read

ou
on
ÿ g0

g
g
ou
og
� 1

g
ov
og
� v

gg
� 1

gg
oV/

o/
� 0; �16a�

ou
ot
�ÿ oP

on

�
ÿ g0

g
g

oP
og

�
ÿ ou2

on

�
ÿ g0

g
g
ou2

og

� 1

g
ouv
og
� uv

gg
� 1

gg
ouV/

o/

�
� Pr

o2u

on2

"
� g0

g
g

� �2
 

� 1

g2

!
o2u
og2
ÿ 2

g0

g
g

o2u
onog

� 1

gg2

�
ÿ g00

g
g

�
ou
og
� 1

g2g2

o2u

o/2

#
; �16b�

ov
ot
� ÿ 1

g
oP
og

� �
ÿ ouv

on

 
ÿ g0

g
g
ouv
og

� 1

g
ov2

og
� v2

gg
ÿ V 2

/

gg
� 1

gg
ovV/

o/

!

� Pr
o2v

on2

"
� g0

g
g

� �2
 

� 1

g2

!
o2v
og2
ÿ 2

g0

g
g

o2v
onog

� 1

gg2

�
ÿ g00

g
g

�
ov
og
ÿ v

g2g2
� 1

g2g2

o2v

o/2
ÿ 2

g2g2

oV/

o/

#
;

�16c�
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oV/

ot
�ÿ 1

gg
oP
o/

� �
ÿ ouV/

on

 
ÿ g0

g
g
ouV/

og

� 1

g
ovV/

og
� 2vV/

gg
� 1

gg

oV 2
/

o/

!

� Pr
o2V/

on2

"
� g0

s
g

� �2
 

� 1

g2

!
o2V/

og2

ÿ 2
g0

g
g

o2V/

onog
� 1

gg2

�
ÿ g00

g
g

�
oV/

og
ÿ V/

g2g2

� 1

g2g2

o2V/

o/2
� 2

g2g2

ov
o/

#
; �16d�

oT
ot
� ÿ ouT

on

�
ÿ g0

g
g
ouT
og
� 1

g
ovT
og
� vT

gg
� 1

gg
oV/T
o/

�

� o2T

on2

"
� g0

g
g

� �2
 

� 1

g2

!
o2T
og2
ÿ 2

g0

g
g

o2T
onog

� 1

gg2

�
ÿ g00

g
g

�
oT
og
� 1

g2g2

o2T

o/2

#
: �16e�

The derivatives in the boundary condition (12b) can be

expressed as

oT
os
� b

oT
oz
ÿ a

oT
or
� 0

! oT
os
� b

oT
on

�
ÿ g0

g
g
oT
og

�
ÿ a

1

g
oT
og

� b
oT
on
ÿ a

1

g

�
� b

g0

g
g

�
oT
og
; �17a�

oVS

on
� o

on
bu� ÿ av� � b

�
� a2

b

�
ou
on

! oVS

on
� b

�
� a2

b

�
a

ou
oz

�
� b

ou
or

�
! oVS

on

� b

�
� a2

b

�
a
ou
on

�
ÿ a

g0

g
g
ou
og
� b

1

g
ou
og

�
�17b�

and substituting (17a) and (17b) into (12b)

b
1

g

�
ÿ a

g0

g
g

�
ou
og

� ÿ a
ou
on
ÿMa b

oT
on

�
ÿ a

1

g

�
� b

g0

g
g

�
oT
og

��
b

�
� a2

b

�
:

�18�
The adiabatic condition on the free surface (12d) in the

�n; g� plane reads

oT
og
� a

oT
on

�
a

g0

g
g

�
ÿ b

1

g

�
: �19�

3. Numerical solution

3.1. The numerical method

Eqs. (16a)±(16e) subjected to the initial and boundary

conditions were solved numerically in the transformed

space (n; g;/) in primitive variables by a ®nite-di�erence

method. The transformed domain was discretized with a

uniform cylindrical mesh and the ¯ow ®eld variables

de®ned over a staggered grid. Forward di�erences in

time and central-di�erencing schemes in space (second

order accurate) were used to discretize the partial dif-

ferential equations, obtaining:

V n�1 � V n � Dt
�ÿr � V V� � � Prr2V

�n ÿ Dtrpn; �20�

T n�1 � T n � Dt
�ÿr � V T� � � r2T

�n
: �21�

The computation of the velocity ®eld at each time step

has been split into two substeps.

In the ®rst, an approximate velocity ®eld V � corre-

sponding to the correct vorticity of the ®eld, but with

r � V � 6� 0, is computed at time �n� 1� neglecting the

pressure gradient in the momentum equation, i.e.,

V � � V n � Dt
�ÿr � V V� � � Prr2V

�n
: �22�

In the second substep, the pressure ®eld is computed by

solving a Poisson equation resulting from the divergence

of the momentum equation with the help of the conti-

nuity equation

r2pn � 1

Dt
r � V �: �23�

Finally, the velocity ®eld is updated using the computed

pressure ®eld to account for continuity

V n�1 � V � ÿ Dtrpn: �24�

The Poisson equation is solved with a successive over

relaxation (SOR) iterative method.

The temperature ®eld at time �n� 1� is obtained from

Eq. (21) after the calculation of the velocity.

For more details on the numerical method see e.g.

Lappa and Savino [4] and Fletcher [11].

The critical Marangoni numbers for the ®rst steady

and for the second oscillatory (Hopf) bifurcation are

denoted, respectively, with Mac1 and Mac2.

The ®rst critical Marangoni number (Mac1) has been

determined for each study-case considered in the com-

putations by monitoring the time temperature and

velocity pro®les in a specially de®ned grid point near the

surface of the liquid bridge (n � 0:75; g � 0:9;/ � p).

Before the transition point, the temperature pro®les

obtained with 2D and 3D numerical computations are

coincident. After the onset of instability the results of

the 3D code depart from 2D computations, due to the
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symmetry breaking and to the 3D ¯ow ®eld organiza-

tion.

For any Ma0 < Mac1 the numerically computed

velocity pro®les reach a constant value corresponding to

the steady and axisymmetric solution of the model

equations. For a Ma00 > Mac1 the velocity pro®les in the

grid points depart from 2D solution. The critical Ma-

rangoni number has been evaluated further re®ning the

value of the imposed Marangoni number between Ma0

and Ma00 (lying respectively below and above the critical

value). This iterative numerical procedure allowed to

compute the value of the ®rst critical Marangoni num-

ber with an approximation of 5%.

A similar procedure can be used to obtain the value of

the second critical Marangoni number (Mac2), the cri-

terion being based in this case on the onset of time os-

cillations in the pro®les of temperature and velocity

rather than on the onset of three-dimensional ¯ow.

3.2. Validation of the numerical procedure

The numerical prediction of convective instabilities

requires a very careful investigation (see, e.g., [12]). For

this reason, the numerical model has been validated by

quantitative comparisons with 2D and 3D numerical

results (S � 1) for Prandtl numbers as close to the one

used in the present work as possible.

For 2D computations, the stream function minimum

of the axisymmetric ¯ow in the case A � 0:5; Pr � 0:1
and Ma � 10 is compared with the results reported by

Wanschura et al. [7]. Table 1 shows that values obtained

with the present code compose very well with those by

Wanschura et al. [7].

To check that the code is able to ``capture'' the

physical instabilities of Marangoni ¯ow, the critical

Marangoni number in the case A � 0:5 and Pr � 0:01

has been computed and compared with the results of

Levenstam and Amberg [3]. For this case, they predict

Mac1 � 20 (using as reference length the length L of the

bridge, according to the present non-dimensionaliza-

tion). The critical Marangoni number determined by the

present numerical computations is Mac1 � 21 (6%

greater than their value) with m � 2. These comparisons

provide a su�cient validation of the present numerical

code.

3.3. Grid re®nement study

In this sub-section, in order to, show the numerical

convergence of the present algorithm a grid re®nement

study is presented.

In Table 1, the computed minimum stream-function is

shown for di�erent grid sizes. The computations have

been performed for uniform grids Nz� Nr (the ®rst

number denotes the number of collocation points in the

axial direction, and the second de®ne the grid size in the

radial direction).

Wanschura et al. [7] found grid convergence for a

resolution of 25 ´ 14 points. In the present paper, grid

convergence has been obtained for a resolution of

22 ´ 22 points (the value obtained for 32 ´ 32 is 0.5%

larger than the value obtained for 22 ´ 22).

The grid re®nement study has been conducted also on

the in¯uence of the number of points used in azimuthal

direction. Table 2 shows that for the case Pr � 0:01 and

A � 0:5 grid convergence can be obtained using 20

points in azimuthal direction (the computed Mac1 does

not change increasing the grid resolution).

4. Results and discussion

Because of the considerable computation time in-

volved (for a stable supercritical ¯ow solution after the

bifurcation point about 50 CPU h on a Silicon Graphics

Power Challenge super computer were needed for each

case considered) the investigation has been restricted to

only one value of the Prandtl number (Pr � 0:01) but

di�erent aspect ratios have been investigated for several

values of the shape parameter S under zero-g conditions.

All the results have been obtained using 22 ´ 22 points

in the r, z plane and 30 points in the azimuthal direction,

whatever is the aspect ratio or the shape factor. Fig. 3

shows some computational grids used in this work.

4.1. The steady bifurcation

The transition process for all the cases investigated

seems to substantiate typical features of the theory of

steady bifurcations.

Table 1

Minimum stream function of the axisymmetric ¯ow as a func-

tion of mesh spacing (Pr � 0.1, Ma � 10)

Grid size Minimum stream

function

Wanschura et al. [7] 25 ´ 14 )0.107

Wanschura et al. [7] 50 ´ 25 )0.107

Present results 22 ´ 22 )0.1055

Present results 32 ´ 32 )0.10570

Present results 42 ´ 42 )0.10578

Present results 52 ´ 52 )0.10580

Table 2

3D grid re®nement study for A � 0.5, Pr � 0.01

Grid size Mac1 m

22 ´ 22 ´ 20 21.5 2

22 ´ 22 ´ 30 21.3 2

22 ´ 22 ´ 40 21.2 2
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When the basic axisymmetric ®eld becomes unstable

the dynamic process of symmetry breaking is not asso-

ciated with time-dependent behavior (see Fig. 4, where

the time pro®les of velocity are illustrated for

A � 0:35; S � 1, and S � 0:915). After a short transient

a 3D ¯ow regime develops which is steady.

In the axisymmetric state, (prior to the transition) the

¯uid-dynamic ®eld corresponds to an axisymmetric to-

roidal vortex. The supercritical state can be interpreted

as the superposition of a steady sinusoidal azimuthal

disturbance to the axisymmetric ®eld, i.e., the generic

¯ow ®eld variable F �r; z;/� can be expressed as

Fig. 3. Computational grids.
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F �r; z;/� � Fo�r; z� � ~F �r; z� sin�m/� G� �25�
where the subscript (o) refers to the axisymmetric ®eld, m

is the azimuthal wave number (from a physical point of

view m represents the number of sinusoidal distortions in

azimuthal direction), ~F is the perturbation amplitude and

G is a constant phase shift due to the fact that the azi-

muthal position of the disturbances is random.

The solution shows that the position of the vortex

core after the bifurcation is displaced sinusoidally along

the azimuthal perimeter of the liquid zone and the

temperature ®eld is characterized by sinusoidal distor-

tions in azimuthal direction.

This result was con®rmed in this paper by subtracting

the azimuthally averaged ¯ow ®eld from the total ¯ow

®eld obtained numerically. Hereafter, the temperature

®elds obtained as di�erences between the numerical 3D

solutions and the corresponding averaged ®elds will be

referred to as temperature disturbances (see for instance

Figs. 8 and 14).

4.2. In¯uence of the aspect ratio

For cylindrical liquid bridges, the numerical compu-

tations have shown that the ¯ow structure of the

supercritical state depends on the value of the aspect

ratio. The lower the aspect ratio, the higher the critical

azimuthal wave number m resulting in the more complex

¯ow organization.

When m increases multicellular structures are formed.

In the generic section, orthogonal to the z-axis 2m

convective cells are present and on the bridge free sur-

face 2m temperature spots (m cold and m hot) appear

Figs. 8(a), 14(a) and 20.

Critical wave numbers m � 1 and m � 3 belongs to

the class of ``asymmetrical'' modes; m � 2 is instead a

``symmetric'' mode. More generally, when the critical

disturbance number (m) is odd, there are two asym-

metrical vortex cells in each meridian plane of the liquid

bridge (one of the two vortex cells in the section prevails

over the other and is extended along the whole axial

plane of the bridge, for instance see Figs. 9(a) and 21(a)).

For even critical wave numbers, the ¯ow ®eld structure

is on the whole three-dimensional and depends on the

azimuthal co-ordinate, but in each meridian plane the

velocity and temperature are symmetric (for instance see

Fig. 15(a)).

The present results obtained for S � 1 (see Table 3)

suggest an empirical correlation between the geometrical

aspect ratio and the critical azimuthal wave number of

the instability. For Pr � 0:01 and cylindrical liquid

bridges this correlation is

mA � 1: �26�
These ®ndings are in agreement with previous results as

shown in Table 4, where the critical wave numbers for

low Prandtl number liquids and di�erent aspect ratios

are summarized.

Rupp et al. [2] found m � 2 for A � 0:6 and for Pr

ranging from 0.007 to 0.16, but they did not make a

study on the in¯uence of the geometrical aspect ratio

(A). Levenstam and Amberg [3] found m � 2 for

A � 0:5 and Pr � 0:01. Lappa and Savino [4] found

m � 1 and m � 2 for A � 1:0 and A � 0:6, respectively

(Pr � 0:04).

Wanschura et al. [7] gave the dependence of the most

``dangerous'' azimuthal wavenumber on the aspect ratio

for Pr � 0:02. They found that as the aspect ratio de-

creases, modes with higher azimuthal wave number m

become critical. In their results the most dangerous

mode is m � 1 for 1:5 > A > 0:8, m � 2 for

0:75 > A > 0:4, m � 3 for 0:35 > A > 0:28 and m � 4

for 0:28 > A > 0:25 in good agreement with the present

results.

Table 3

Mac1 and m versus the geometrical aspect ratio (S � 1)

A Mac1 m

0.2 50 4

0.25 47 3

0.35 45 3

0.4 35 2

0.6 25 2

0.75 27 2

0.8 30 2

0.85 32 2

0.9 33 1

1 35 1

1.25 45 1

Fig. 4. Non-dimensional velocity versus non-dimensional time

in the point n � 0:75; g � 0:9;/ � p.
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4.3. In¯uence of the shape

The computations performed considering a non-

cylindrical surface point out that the shape parameter S

in¯uences both the critical Marangoni number and the

critical azimuthal wave number (see Table 5).

For A � 1 and a cylindrical shape (S � 1), the wave

number is m � 1 (Mac1 � 35). In the generic cross-sec-

tion orthogonal to the liquid bridge axis there are two

azimuthal convective cells (see Figs. 5(a) and 6(a)) and

two thermal spots (Fig. 7(a)). Moreover, two thermal

spots are present on the liquid bridge surface (Fig. 8(a)).

When a non-cylindrical shape is considered (S 6� 1),

the ®rst critical Marangoni number is lower for S > 1

(convex bridge) and higher for S < 1 (concave bridge).

For instance the critical Marangoni number becomes

Mac1 � 30 for S � 1.22 and Mac1 � 47 for S � 0.78.

For A � 1, m � 1, for S � 1 (and for S < 1); and

m � 2 for S � 1.22 (¯at liquid bridge).

In the generic cross-section orthogonal to the liquid

bridge axis, there are two azimuthal convective cells

and two thermal spots on the liquid bridge surface for

S � 1 but for S � 1.22 the convective cells and the

temperature spots are four Figs. 5±7 and there are four

thermal spots on the free surface (two hot and two

Table 5

Mac1 and m versus the shape factor S

A�L/D Am S Mac1 m

1.0 1.5 0.78 47 1

1.0 1.0 1.0 35 1

1.0 0.75 1.22 30 2

0.75 1.0 0.83 33 1

0.75 0.75 1.0 27 2

0.75 0.60 1.17 24 2

0.35 0.4 0.915 40 2

0.35 0.35 1.0 45 3

0.35 0.31 1.085 50 3

Fig. 5. Radial velocity component in the section z � 0.5 for A � 1: (a) S � 1, Ma � 35; (b) S � 1.22, Ma � 30.

Table 4

Critical azimuthal wave number versus geometrical aspect ratio (comparison of the present results with other results available in

literature)
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cold, Fig. 8b). Moreover comparing Fig. 9(a) and (b),

it is evident how in the ®rst case the ¯ow pattern in the

generic meridian plane is asymmetric (due to an odd

mode of supercritical convection) whereas in the latter

it is symmetric (due to an even mode of supercritical

convection) (see Fig. 10).

Fig. 6. Azimuthal velocity component in the section z � 0.5 for A � 1: (a) S � 1, Ma � 35; (b) S � 1.22, Ma � 30.

Fig. 7. Temperature disturbances in the section z � 0.5 for A � 1: (a) S � 1, Ma � 35; (b) S � 1.22, Ma � 30.

Fig. 8. Temperature disturbances on the liquid bridge surface for A � 1: (a) S � 1, Ma � 35; (b) S � 1.22, Ma � 30.
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For A � 0.75 and cylindrical shape, the critical Ma-

rangoni number is Mac1 � 27 and the critical wave

number is m � 2 (Figs. 11±14).

Similarly to the situation analyzed for A � 1, for

A � 0.75 the ®rst critical Marangoni number for S � 1

exhibits a higher value for S < 1 (concave bridge) and

Fig. 11. Radial velocity component in the section z � 0.5 for A � 0.75: (a) S � 1, Ma � 27; (b) S � 0.83, Ma � 33.

Fig. 9. Velocity ®eld in the meridian plane / � 0 for A � 1: (a) S � 1, Ma � 35; (b) S � 1.22, Ma � 30.

Fig. 10. Temperature ®eld in the meridian plane / � 0 for A � 1: (a) S � 1, Ma � 35; (b) S � 1.22, Ma � 30.
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lower value for S > 1 (convex bridge). The ®rst critical

Marangoni number becomes in fact Mac1 � 33 for

S � 0.83 and Mac1 � 24 for S � 1.167. However in this

case, in contrast with the result found for A � 1, the

critical mode number does not change when the volume

is increased and is shifted to a lower value (m � 1) when

Fig. 12. Azimuthal velocity component in the section z � 0.5 for A � 0.75: (a) S � 1, Ma � 27; (b) S � 0.83, Ma � 33.

Fig. 13. Temperature disturbances in the section z � 0.5 for A � 0.75: (a) S � 1, Ma � 27; (b) S � 0.83, Ma � 33.

Fig. 14. Temperature disturbances on the liquid bridge surface for A � 0.75: (a) S � 1, Ma � 27; (b) S � 0.83; Ma � 33.
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the volume of the liquid bridge is reduced (concave

liquid bridge S � 0.83, Figs. 11±14). Comparing Fig.

15(a) and (b), it is evident in fact how in the ®rst case the

¯ow pattern is symmetric whereas in the latter it is

asymmetric (see Fig. 16).

In contrast with the behavior observed for A � 1 and

for A � 0.75, for A � 0.35, the ®rst critical Marangoni

number for S � 1 exhibits a higher value for S > 1

(convex bridge) and a lower value for S < 1 (concave

bridge). The ®rst critical Marangoni number is 45 for

Fig. 15. Velocity ®eld in the meridian plane / � 0 for A � 0.75: (a) S � 1, Ma � 27; (b) S � 0.83, Ma � 33.

Fig. 16. Temperature ®eld in the meridian plane / � 0 for A � 0.75: (a) S � 1, Ma � 27; (b) S � 0.83, Ma � 33.

Fig. 17. Radial velocity component in the section z � 0.5 for A � 0.35: (a) S � 1, Ma � 45; (b) S � 0.915, Ma � 40.
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S � 1 and becomes Mac1 � 40 for S � 0.915 and

Mac1 � 50 for S � 1.085.

Moreover, the critical wave number m � 3 for cylin-

drical shape is shifted to m � 2 when S is reduced.

Consequently, in the generic cross-section orthogonal to

the liquid bridge axis there are six azimuthal convective

cells and six temperature spots, and six thermal spots on

the liquid bridge surface for S � 1 Figs. 17±20 but for

Fig. 18. Azimuthal velocity component in the section z � 0.5 for A � 0.35: (a) S � 1, Ma � 45; (b) S � 0.915, Ma � 40.

Fig. 19. Temperature disturbances in the section z � 0.5 for A � 0.35: (a) S � 1, Ma � 45; (b) S � 0.915, Ma � 40.

Fig. 20. Temperature disturbances on the liquid bridge surface for A � 0.35: (a) S � 1, Ma � 45; (b) S � 0.915, Ma � 40.
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S � 0.915 the convective cells and the temperature spots

are four Figs. 17±19 and there are four thermal spots on

the free surface (one hot and one cold, Fig. 20(b)).

Moreover comparing Fig. 21(a) and (b), it is evident

how in the ®rst case the ¯ow pattern is asymmetric (due

to a critical wave number m � 3) whereas in the latter it

is symmetric (due to a critical wave number m � 2) (see

Fig. 22).

The results discussed above show that the in¯uence of

the non-cylindrical shape on the Marangoni instability

in low Prandtl number liquids is di�erent compared to

the case of high Prandtl number liquids, where the curve

of the critical Marangoni number exhibits a maximum,

versus the parameter S, depending on the aspect ratio

(see, e.g., Hu et al. [13] and Chen et al. [10]).

4.4. Discussion

In the previous paragraphs, it has been pointed out

that the critical azimuthal wave number increases when

the geometrical aspect ratio of the bridge is decreased

(Section 4.2) and that, for a ®xed aspect ratio, it can be

shifted to higher values by increasing the volume or to

lower values by decreasing the volume (Section 4.3).

In particular the numerical results predict m � 1 for

A � 1, m � 2 for A � 0.75, and m � 3 for A � 0.35 if

S � 1; moreover m � 2 for A � 1.0 and S � 1.22,

m � 1 for A � 0.75 and S � 0.83 and m � 2 for

A � 0.35 and S � 0.915.

All these results can be summarized with a simple for-

mula if the geometrical parameter de®ned as Am � Dm/L

is introduced; in fact: m � 1 for A � 1 (S � 1) and

Am � 1 (A � 0.75, S � 0.83), m � 2 for A � 0.75

(S � 1) and Am � 0.75 (A � 1, S � 1.22) and m � 2 for

A � 0.4 (S � 1) and Am � 0.4 (A � 0.35, S � 0.915).

Until now all the theoretical-empirical laws intro-

duced to correlate the critical azimuthal wave number to

the geometry of the liquid zone have been formulated

considering the relation between the mode number and

the geometrical aspect ratio of the zone de®ned as L/D in

order to have m as a function of the characteristic

lengths of the liquid zone.

It is known that discrete wave numbers of dis-

turbances are selected out of the full spectrum of

disturbances because the convection roll is closed in a

special zone geometry. When the instability is hydro-

dynamic in nature, since it does not depend on the be-

havior of the temperature ®eld (for this instability the

temperature ®eld simply acts as a driving force for

the velocity ®eld), the selection rule is given simply by

the constraint that the azimuthal wavelength must be an

aliquot of the toroidal vortex core circumference (as

stated by Chun et al. [14]) and by the fact that the

convection roll is limited axially by the presence of the

sidewalls (as stated by Xu and Davis [15]).

According to this theory, the critical wave number

should be related to the axial length of the zone and to

the diameter DV of the center-line of the convection roll,

i.e., it should scale with the parameter AV � DV=L.

Preliminary computations concerning the case of ax-

isymmetric Marangoni ¯ow (Ma < Mac1), performed in

order to study the e�ect of the surface shape on the

features of the stable Marangoni convection, have

shown that for all the cases investigated (0:3 <
A < 1:3; S � 1 and S 6� 1), the center of the Marangoni

toroidal vortex is located at a distance from the sym-

metry axis ranging between 72% and 79% of the minu-

mum (or maximum) radius of the bridge (g � 0:75) and

at a distance from the cold disk of 40±41% (n � 0:4) of

the axial length of the bridge (for instance see Figs. 23

Fig. 21. Velocity ®eld in the meridian plane / � 0 for A � 0.35: (a) S � 1, Ma � 45; (b) S � 0.915, Ma � 40.

Fig. 22. Temperature ®eld in the meridian plane / � 0 for A � 0.35: (a) S � 1, Ma � 45; (b) S � 0.915, Ma � 40.
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and 24). On the basis of these results an average corre-

lation law can be introduced:

D� � DV=Dm � 0:75; �27�

where DV is the diameter of the toroidal convection roll.

The ®nding that D� does not change for di�erent

values of S (including S � 1) is very important because

it makes possible to explain the results concerning the

three-dimensional Marangoni instability in non-cylin-

drical liquid bridges.

For cylindrical liquid bridges (27) reads

D� � DV=D � 0:75 �28�

and substituting (28) in (26):

mA � m
L
D
� m

L
DV

DV

D
� 1! m

L
DV

� 1:33! mAV � 1:33

�29�
with AV � L=DV:

Since (29) is based on the real diameter of the toroidal

vortex, on the basis of the discussion reported above, it

can be generalized to the case of non-cylindrical liquid

bridges so that it is possible to write

m
L

DV

� 1:33 � m
L

Dm

Dm

DV

! mAm � 1 �30�

obtaining thus a generalized form of the (26).

Fig. 23. (a) Streamlines in the generic meridian plane of the liquid bridge for A � 0.75, S � 1 and Ma � 20. (b) Streamlines in the

generic meridian plane of the liquid bridge for A � 0.75, S � 1.17 and Ma � 20. (c) Streamlines in the generic meridian plane of the

liquid bridge for A � 0.75, S � 0.83 and Ma � 20.
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These ®ndings also shed some light on the behavior of

the ®rst critical Marangoni number. It has been shown

that the ®rst critical Marangoni number is increased for

concave bridges and decreased for convex bridges when

A � 1 and A � 0.75 and vice versa it is decreased for

concave bridges and increased for convex bridges when

A � 0.35.

These particular results can be explained considering

that the thermo-¯uid-dynamic ®eld (in particular the

Marangoni toroidal vortex) is characterized, as dis-

cussed above, by the parameter Am rather that A � L/D

so that if two bridges have the same Am (i.e. a cylindrical

bridge has a geometrical aspect ratio equal to the

parameter Am of a bridge having deformed surface) their

instability will behave in a similar way and the critical

Marangoni numbers will be very similar.

The critical Marangoni number as a function of the

geometrical aspect ratio A is shown in Table 3 in the case

of cylindrical surface. The critical Marangoni number is

an increasing function of the aspect ratio for A > 0:6
and a decreasing function for A < 0:6 reaching a mini-

mum for A � 0.6.

For A > 0:6 and cylindrical surface for a ®xed value of

A � L/D if Am is decreased (convex bridge) the bridge

behaves as a lower aspect ratio liquid zone and conse-

quently its critical Marangoni number is decreased,

viceversa if Am is increased (concave bridge) the bridge

behaves as a higher aspect ratio liquid zone and conse-

quently its critical Marangoni number is increased. A

completely opposite behaviour happens for A < 0:6
since in this case the critical Marangoni number is a

decreasing function of the aspect ratio.

Unfortunately, the experimental check of the numer-

ical results discussed above is not possible due to the

lack of experimental results on this subject. In fact no

data on the ®rst ¯ow instability of Marangoni convec-

Fig. 24. (a) Streamlines in the generic meridian plane of the liquid bridge for A � 0.35, S � 1 and Ma � 40. (b) Streamlines in the

generic meridian plane of the liquid bridge for A � 0.35, S � 1.085 and Ma � 40. (c) Streamlines in the generic meridian plane of the

liquid bridge for A � 0.35, S � 0.915 and Ma � 40.
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tion in low Prandtl number liquids are available in the

literature.

4.5. Second transition from steady to oscillatory ¯ow:

comparison with experimental results

All the results presented above refer to the ®rst tran-

sition (from the steady symmetric to the steady asym-

metric organization). If the Marangoni number across

the bridge is further increased a second transition occurs

at Mac2 from the steady to unsteady periodic ¯ow ®eld.

Di�erent with the ®rst transition, this second tran-

sition can be detected experimentally by monitoring the

temperature time history at ®xed points in the bridge.

Because of experimental di�culties only few data on this

second bifurcation are available.

Tao and Ku [16] investigated Marangoni convection

in a liquid bridge (half zone) of tin. They estimated the

critical Marangoni number by looking at the onset of

oscillations of temperature measured by thermocouples

inserted in the liquid; therefore information are available

only for the second (oscillatory) bifurcation.

Tin was selected as the material for study in view of its

relatively low melting point and well documented

physical properties (Pr � 0.013). The experiment was

conducted in a vacuum chamber in order to prevent

oxidation. A liquid bridge of tin was held between two

vertical coaxial iron rods 4.5 mm in diameter and 4.6

mm apart (A � 1). A ¯ow oscillation (with a frequency

f � 5 [Hz]) was observed (using thermocouples inserted

in the liquid) at a temperature di�erence of 85 K (cor-

responding to a Ma � 488). The peak to peak tem-

perature amplitude oscillation was found to be 2.6 K.

This case has been simulated in the present work for

comparison.

For Pr � 0.013, A � 1, S � 1 a ®rst steady bifurca-

tion occurs at Mac1 � 36 with m � 1 and a second Hopf

bifurcation at Mac2 � 75 with m � 2.

The second critical Marangoni number Mac2

measured experimentally (Mac2 � 488) is larger than the

numerically computed one. This di�erence can be ex-

plained by the fact that the numerical computations

were performed assuming zero-g conditions, i.e., a

cylindrical surface shape and zero buoyancy e�ects,

whereas the experiment was performed in one-g condi-

tions with ``S'' shaped tin-air interface (no information

on the surface shape is available however in Tao and Ku

[16]). An aspect ratio A � 1 is too large for buoyancy

convection not to play a signi®cant role in the devel-

opment of the instability.

In addition, it must be pointed out that the procedure

employed during the experiments is di�erent from the

one used in the present work. Typically the critical

Marangoni number is measured by establishing a tem-

perature ramp that increases with time the tempera-

ture di�erence across the bridge. It has been shown in

previous papers (Savino and Monti [17]) that unsteady

e�ects, related to the temperature ramp, may postpone

the transition point so that the instantaneous Marang-

oni number, at which temperature oscillations occur,

may be larger compared to the one predicted by stability

analysis and by numerical simulations that assume an

initial steady state.

The numerically computed oscillation frequency and

the amplitude of the temperature oscillations obtained

for Ma � 488 (Fig. 25) were found to be f � 4.2 Hz and

3 K, respectively (in su�cient agreement with the ex-

perimental results obtained in one-g conditions by Tao

and Ku [16] who found a frequency of about 5 Hz and a

temperature amplitude of about 2.6 K).

The spatio-temporal behavior of the thermo¯uid-

dynamic ®eld was found to be very similar to a

``standing wave regime'', characterized by the ``pul-

sation'' in time of surface temperature spots (hot spots

grow during the shrinking of cold spots and vice

versa). This behavior has been observed and explained

in many works related to high Prandtl liquids

[6,18,19].

5. Conclusions

A numerical code has been developed which is able to

give a direct 3D and time-dependent simulation of

Marangoni ¯ow instability in liquid bridges with de-

formed surface in microgravity conditions.

In this paper, the attention has been focused on the

case of low Prandtl number liquids, e.g., semicon-

ductor melts, due to their particular relevance in the

Fig. 25. Temperature oscillations in the point z � 0.75, r �
0.9/2A, / � p in the case A � 1, Pr � 0.013 and Ma � 488.
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containerless method of ¯oating zone crystal growth.

The numerical results have been analyzed and inter-

preted in the general context of the bifurcations the-

ory. It has been shown that for semiconductor melts

the ®rst bifurcation is characterized by the loss of

spatial symmetry rather than by the onset of time-

dependence and that, when the basic axisym-

metric ¯ow ®eld becomes unstable, after a short

transient, a three-dimensional supercritical steady state

is reached.

It has been pointed out that the shape factor S is a

sensitive parameter for Marangoni instability since it

in¯uences both the critical Marangoni number and the

critical azimuthal wave number.

The numerical results have shown that for a ®xed

aspect ratio the critical azimuthal wave number can

be shifted to higher values by increasing S (convex

shape) or to lower values by decreasing S (concave

shape).

These behaviors have been explained considering the

relation between the nature of disturbances and the

radial and axial extension of the Marangoni toroidal

vortex.

A generalized empirical correlation between the criti-

cal azimuthal wave number and the non-dimensional

geometrical parameter Am has been introduced.

Based on the results of present paper, there are at least

two critical geometrical parameters which must be

considered when non-cylindrical liquid bridges are in-

vestigated in zero-g conditions, that are the geometrical

aspect ratio A and the shape factor S.

The second oscillatory (Hopf) bifurcation has been

studied for A � 1 and S � 1 in order to compare the

numerical results with experimental ones available in the

literature. In particular, the computed frequency and

temperature oscillations amplitude are in su�cient

agreement with the experimental results obtained by

Tao and Ku [16] with a liquid bridge of molten tin in

one-g conditions.

The main features of the 3D ¯ow have been dis-

cussed in terms of vector plots, isotherms, and thermal

distortions with respect to the basic axisymmetric ®eld.

The ¯ow ®eld organization, in the transversal cross-

sections, in the axial planes and on the cylindrical free

surface have been illustrated, for di�erent critical wave

numbers corresponding to di�erent values of the

geometrical aspect ratio of the liquid bridge and/or to

di�erent shapes of the free surface (convex or con-

cave).
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